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ABSTRACT  
 
GNSS spoofing is a growing concern due to the increasing use of GNSS in safety and economically important applications. 
The widespread use of GNSS in these tasks means that GNSS needs to be protected from spoofing in many location. Even 
with the most basic task of GNSS spoof detection, it is generally difficult and costly to have a rapid and widespread response. 
An attractive way of addressing the challenge is to harness the most widespread and lowest cost GNSS receivers, those found 
in smartphones, to help with spoof detection. Further enhancing this potential are the raw GNSS measurements enabled by 
the latest versions of Android (7.0 and above). The capability and ubiquity of these GNSS receivers along with the 
connectivity and alternative navigation sources found in smartphone makes a crowdsourced network both powerful and 
reasonable. This paper examines the potential of these crowdsourced, networked smartphone measurements for spoof 
detection. Specifically, it focuses on tests of the crowdsourced detection concept using different smartphone measurements 
and multiple smartphones. It examines several available measurements: 1) position, 2) acceleration (from GNSS and 
accelerometer), 3) automatic gain control (AGC) and carrier to noise (C/No) levels and 4) pseudo ranges. These are examined 
on both a standalone and a networked, cross receiver basis. These are examined using measurements taken from laboratory 
and field tests, including an on air spoofing test. 
 

INTRODUCTION  
 



GPS and GNSS is well integrated into our society. This integration is only going to increase in the future. It is part of our 
critical infrastructure for timing communications, power grids and financial transactions. It is critical for aircraft navigation. 
Its use as a safety of life navigation source in railway control and autonomous vehicles is increasing. It also supports hobbies 
and location based games such as Pokémon Go. But its popularity and ubiquity is also makes it a target for many. The 
widespread use of position in many consumer applications (i.e. Uber) also creates financial incentives for spoofing GNSS 
[1][2][3]. Deliberate disruption of GNSS, either jamming or spoofing, can have wide ranging effects making it a potential 
target for malicious individuals. Even people without malicious intent, looking to only disrupt GNSS due to privacy concerns 
or gaming advantage, may inadvertently affect safety and economically critical uses of GNSS. Hence it is important for 
safety and economic considerations that such these deliberate disruptions and degradations be identified and terminated as 
soon as possible. An attractive idea is to use crowd-source GNSS information from smartphones to provide rapid detection 
and localization of degradation events. 
 
Many characteristics of smartphones make them a good building block for a responsive GNSS interference detection system. 
Their ubiquity helps with detection even on a small scale and where disruption may have the worst effect. Indeed, as these 
devices are carried by people, they are most densely located where people are most densely located. Since there is a high 
density of devices in many areas, even a small, localized disruption may be observed by some devices. Hence, they may be 
useful to detect smaller interference events. Second, they have many sensors and outputs that can aid in detection. Inertial 
sensors can help detect outlier positions. Recent versions (as of 2017) of Android will support outputs such as carrier phase, 
pseudo ranges, and automatic gain control (AGC) levels. These can also be used to discriminate between natural sources of 
degradation such as multipath, shadowing or being indoors and deliberate sources. Third, they are networked which means 
we can leveraged the power of many such devices to do cross checking and localization. 
 
This paper discusses and examines our preliminary developments and testing with using smartphones to perform crowd-
sourced detection and localization of interference, focused on spoofing. A smartphone app capable of capturing GPS 
observables from Android smartphones was developed to support this endeavor [4]. It can obtained and upload all GNSS 
observables provided by the smartphone including satellite or pseudo random number (PRN), carrier to noise ratio (C/No), 
position as well as network location and other location information. It is built to capture data that are supported in Android 
version 7 and 8 such as pseudo range, carrier phase, and AGC levels if they are provided. It can push this data to a server and 
stores a local copy as a backup. Using this application, we examine three aspects of using crowd-sourced measurements to 
detect jamming and spoofing: 1) network comparison of GNSS positions and C/No, 2) networked acceleration comparisons 
and 3) AGC to minimize false alerts from natural causes of signal degradation. These results are based on field data collect in 
government sponsored interference exercises conducted in 2017. 
 
Our prior papers covered crowdsourced interference detection [4] and single receiver detection methods [5] so this paper will 
focus primarily on spoof detection via crowdsourced, networked based solutions. Specifically it examines comparison of 
positions, measurement discrepancies, inertial and continuity. It outlines the performance and challenges of crowd-source 
smartphone measurements for GNSS spoof detection. It utilizes on-air data to show some of the different behaviors found 
and examines means of managing these behaviors to create a robust detection system. 
 

2. BACKGROUND 
 
GNSS Localization 
 
An important step to mitigating radiofrequency interference (RFI), be it jamming or spoofing, is detection and localization. 
How can the detection and localization be accomplished? In the past, such as the interference event at Moss Landing (2003) 
and Newark (2009, 2012), it took a directional antenna and hours, days or even months of manual effort to localize due to 
several factors [6][7]. As the interference is intermittent, detection equipment needs to be in place and ready for operations. 
In the early incidents, even a simple directional antenna with a detector took time to get. To expedite detection, we proposed 
using an unmanned aerial vehicle, known as Jammer Acquisition with GPS Exploration and Reconnaissance or JAGER, to 
find the interferers. JAGER could fly a find jammers though it was. Another possible rapid response is to use dedicated 
infrastructure. An example is the Signal Sentry system built by Exelis (now Harris) which was test deployed at the Superbowl 
held in the Meadowlands, New Jersey, shown in Figure 1, as well as a few other venues [8]. This system has demonstrated its 
capabilities in several field tests [8] and can work well but it would be costly to scale up. To cover the couple square miles, it 
has many fixed stations with communications infrastructure. 
 



Another approach proposed is to use mobile assets to crowdsourced measurements. First, this approach can offers many 
observers and observables – especially with recent Android additions. Furthermore, it is potentially low cost and easy to 
deploy and scale as it only requires an app download to add another observer. There are several drawbacks to the approach 
relative to fixed, dedicated assets. The system is not homogeneous with less controlled and noisier measurements. While 
smartphones GNSS receivers are powerful receivers, they are not reference or survey grade receivers nor have the high 
quality antennas that would be employed in a dedicated detection system. Furthermore, smartphones may be moving and 
inside purses and pockets making their GNSS measurements both more difficult to use for some detection techniques (i.e. 
acceleration comparison) and weaker relative to fixed assets. It is also ad hoc and its deployment may not be ideal to provide 
guaranteed protection of specific sites. That being said, existing Android cellphone users can provided useful measurements 
and additional units can be fielded with relatively low costs. As the old saw goes, “quantity has a quality all its own.” 
 

 
Figure 1. Exelis Signal Sentry 1000 deployed in Meadowlands, NJ [8] 

 
Android App and Observables 
 
While the idea of using smartphones for crowdsourced GNSS interference detection has been around [4][9], new 
developments in the Android operating system (OS), since Android 7.0 or Nougat, has allowed users to access many GNSS 
related observables that were previously unavailable. It provides additional powerful means for spoof detection. Prior to 
Android 7.0, position, the most relevant available observables for detection are position, velocity, C/No and satellite 
available. Android 7.0 offers pseudo range, pseudo range rates, carrier phase measurements and others. Android 8.0 added 
AGC measurements. This is shown in Table 1. These observations make the smartphone an even more powerful interference 
detector and provides stronger capabilities to identify and distinguish between spoofing and jamming. It is important to note 
that the observables available from the phone depends not just on the version of Android operating system but also on what 
the phone original equipment manufacturer (OEM) and the GNSS chipset maker provides. For example, while there are 
many phones operating on Android 8.0, only the Google Pixel 2 and 3 smartphone series currently provide AGC 
measurements enabled by this OS version. Available measurements on specific models are provided in 
https://developer.android.com/guide/topics/sensors/gnss.  
 
Table 1. Android OS version and potential available observable for GNSS interference and spoof detection  

Android Version Benefits GNSS observables 
6 “Marshmallow” 
and earlier 

Basic GNSS measurements Position, Velocity C/No, satellite/constellation 

7 “Nougat” Raw GNSS measurements Pseudo range and pseudo range rate, Navigation messages. 
Accumulated delta range or carrier. Hardware (HW) clock. 

8 “Oreo” Automatic Gain Control AGC 
 



Each generation provides even more possibilities. Soon all US phones will have access to Galileo measurements. On 
November 15, 2018, the US Federal Communication Commission (FCC) has approved a waiver allowing the use of Galileo 
signals on non-federal US GNSS devices [10][11]. While this has been built into chipsets for many years and available 
around the world, this decision finally allows US smartphones access which provides us the use of these signals to aid RFI 
detection. In fact, the Google Pixel phones, as of January 2019, are now able to use Galileo in the US. Additionally, Android 
has built into the protocol access to these observables on multiple frequencies and the first multi-frequency mass market 
smartphone, the Xiaomi Mi 8, is now available and utilizes L5.  
 
The most basic processed measurements provided by all receivers are position, velocity, and, by extension, acceleration. 
These measures can be used for detection of jamming or spoofing in a standalone receiver, however, it may be hard to have 
confidence in the detection and discrimination from a single receiver given the variety of conditions it may experience. This 
is particularly true for smartphones that are constantly moving around in different orientations and environments. For 
example, a jump in position or velocity may be due to spoofing or it may be due to multipath. Loss of signal may be due to 
jamming but it may also be due to blockage from foliage, tunnel, buildings or going indoors. Pseudo ranges and pseudo range 
rates can provide a more precise look based on individual satellites but this measure suffers from the similar limitations. 
Acceleration comparison is another possibility as practically all smartphones, including the cheapest, utilize three axis 
microelectromechanical systems (MEMS) accelerometers to manage screen orientation. Comparison between GNSS- and 
accelerometer-derived accelerations is another potential measure for standalone and networked based spoof detection. As we 
shall see later, individual discrepancies between GNSS and accelerometer acceleration, even if large, does not guarantee that 
there is spoofing. 
 
Another useful set of measurements are receiver signal parameters such as AGC and C/No [12][13]. As discussed later, AGC 
and C/No can be a good indicator of jamming and spoofing for a standalone receiver. Ideally, they are used together as this 
combination can differentiate between jamming and spoofing. AGC gain is set to keep the power entering the receiver 
relatively constant. Hence decreased gain indicates more power is entering the antenna. Thus it can be used to determine the 
relative amount of energy entering the antenna. If we use C/No, then it can help tell whether the increased energy is due 
jamming or spoofing or something else.  
 
The utility of crowdsourced, networked detection is the fact that we can compare across multiple receivers to see if 
something is systematic. The effects of many natural events depend on individual locations and times and generally will 
befall different receivers at different times. However, deliberate interference or spoofing should manifest in all affected 
receivers almost simultaneously. For example, if all local receiver simultaneously lose positions or have position jumps, this 
is a strong indication of interference or spoofing. This paper focuses on the crowdsourced aspect of spoof detection.  
 
The networked approach can also enhance several desirable features of spoof detection. The first is that it can allow for more 
steady state detection tests – tests that detect spoofing even well after it has been initiated and has captured the receiver. 
Some tests, such as range, position or acceleration consistency tests, only can detect on the initial onset of spoofing where the 
receiver is transition from the genuine to the spoof signals. These tests are termed transient tests and do not work once the 
receiver has been completely captured. But, across multiple receivers, indications of spoofing that may be equivocal during 
after capture, such as a slightly lower AGC value or C/No changes may still provide useful detection when examined across 
multiple affected receivers. The network approach can also help with other important metrics such as low missed detection 
and false alert rates. Very low false alert rates are vital as any alert reduces system availability. False alerts are a tax on the 
user, especially since spoofing is currently exceptionally rare. Too high a false alert may make the user distrust the receiver 
warnings or even dislike the spoof detection feature. Measurement and spatial diversity provided by the crowdsourced 
networked approach should help develop robust, meaning low missed detection and false alert, GNSS spoof detection. 
Finally, smartphones are attractive for GNSS spoof detection because of the many measurements available and the relative 
ease of fielding and crowdsourcing these measurements.  
 
 

3. EXPERIMENTAL SET UP & TESTING OVERVIEW 
 
While we can conceive of many means to use crowdsourced receiver measurements for RFI detection and localization, real 
receivers and scenarios often do not conform to our idealized conception of their behavior. To test some of the concepts we 
acquired several smartphones and develop an app to capture available GNSS data from the device [4]. The bespoke app, 



termed GNSSLogger like the Google developed app it was based on, was used to gather available GNSS, network and hybrid 
position data. Additionally, it can gather raw GNSS measurements if available. The app can be set to store locally or send to 
server. Additionally other apps were used to collect sensor data. Specifically, the now unavailable “sensor track” app was 
used to collect accelerometer, orientation and GNSS data. Similar apps for sensor data collection such as Sense-It are 
available on the Android store. 
 
Equipment 
 
The smartphones used for most field tests with on air jamming or spoofing were low cost Alcatel Ideal (ALC). Also available 
were Samsung Galaxy Note 3 (GN3), LG Aristo (LGA). These phones were generally on Android version 6 or earlier which 
means they only had access to position, satellites, and C/No. After these field tests, we obtain a Google Pixel 2 and Pixel 3 
XL which are on Android 8.0 or higher which allowed us access to additional measurements such as pseudo ranges and 
AGC. All phones used could support our GNSSLogger app and sensor data app. These apps can detect the measurements 
available on the phone and collect only those supported measurements. Table 2 shows the phones used, the Android version 
installed at the time of testing and available measurements. 
 
Table 2. Smartphones used and their available measurements at time of field tests 

Smartphone Android Version Available Measurements 
Alcatel Ideal 6 Position (GNSS, Network, Hybrid), C/No, Accelerometer 
Samsung Galaxy 
Note 3 

5 Position (GNSS, Network, Hybrid), C/No, Accelerometer, Gyroscope, 
Magnetometer, Barometer 

LG Aristo  6 Position (GNSS, Network, Hybrid), C/No, Accelerometer 
Google Pixel 2 8 Position (GNSS, Network, Hybrid), C/No, Accelerometer, Gyroscope, 

Magnetometer, Barometer, GNSS Raw Measurements, AGC 
 
Field Testing 
 
Empirical tests were conducted at several different locales with various smartphones. Laboratory and field experiments were 
conducted with the Google Pixel 2 and 3 to examine AGC performance. Interference tests were conducted in a small 
anechoic box. Field tests under nominal conditions were conducted in 2016 and 2017 in the San Francisco Bay area with 
measurements taken onboard the local commuter train, Caltrain, used for comparing smartphone GNSS and accelerometer 
accelerations. A modified Samsung Galaxy Note 3 was used with an example set up shown in Figure 2.  
 

 

Figure 2. Samsung Galaxy Note 5 data collection on Caltrain 



On air spoofing tests were conducted at government sponsored interference exercises in 2017. In the spoofing exercise, a 
spoofed signal was transmitted into a targeted area to minimize effect on other parties. The equipment under test operated in 
the targeted area. Many different spoofing scenarios were conducted affecting either position or time. GPS was spoofed, but 
other signals such as the Wide Area Augmentation System (WAAS) or GLONASS were typically not. Jamming sometimes 
occurred prior to spoofing. Furthermore, since our victim receivers are in spoofed zone, their locations are roughly known.  
 
These smartphones were fielded statically at several locations in the spoofed zone as seen in Figure 3. Our bespoke app was 
operated on each phone with the app and was set to store data locally as our test area did not have cellular connectivity. 
While five phones were fielded, different Android phones have different implementations and settings for sleep mode. The 
Alcatels are basic phones that generally did well recording continuously however other phones would stop recording after 
one hour presumably due to their power management systems. 
 

 
Figure 3. Static relative positions of static Alcatel smartphones during spoofing scenarios presented 

 

4. RESULTS  
 
We examined some of the possible measures for spoof detection previously discussed using the various data collection 
efforts. First, we examine GNSS position and position comparisons across several affected smartphones. We will see that this 
method has some utility but has significant limitations by itself. Next, we examine comparison of acceleration derived from 
GNSS and MEMS accelerometer to provide a way of getting additional information. Receiver measures such as AGC and 
C/No provides independent metrics for interference and spoofing detection. These can be utilized together or individually 
across multiple smartphones. A fourth possibility is to use pseudo range measurements allows us to overcome one of the 
issues with position comparisons.  
 
Position  
 
Position, and by extension velocity, is a measurement available on all smartphone GNSS as that is their raison d’etre. 
Examining GNSS position on a standalone receiver cannot provide robust spoof detection. While some spoofing may cause 
position jumps, such jumps may also be caused by natural sources. Smartphones are often moving in urban areas which can 
satellite ranges to have come in and out and have multipath resulting in position jumps. Smart spoofers may be surreptitious 
enough not to cause jumps. But we can use comparisons of positions across many smartphones to help detect spoofing.  
 
A simple approach is to compare smartphone positions. One may expect to see receivers experiencing the same spoofing 
signals to output the same position. However, this phenomena generally does not occur, even if the receivers are exactly the 
same and are experiencing the same spoof signal. Figure 4 shows the calculated positions of three Alcatel Ideal smartphones 



experiencing the same set of spoofing scenarios over the course of several hours. The figure is zoomed out of the area where 
the phones are actually deployed so locations outside of the exact center are spoofed location. The figure shows that the 
phones often do not report the same spoofed position. There are many reasons for the difference. The same jamming and 
spoofing can affect smartphones differently based on their relative location, hardware and even the internal operating state of 
the receiver, such as the state of the positioning engine. Each receiver may weigh of each signal differently depending on past 
history. For example, GLONASS is not spoofed or knocked out during the scenarios shown in the figure. So one potential 
contributor to the difference seen in the figure is that each receiver weighs the genuine GLONASS pseudo ranges differently 
relative to the spoofed GPS signals. So we need to be more sophisticated about the comparisons to have robust detection 
techniques. 
 
Rather than expecting positions to converge, another metric may be to look for position changes that occur near 
simultaneously. Figure 5 shows a plot of the position changes over time for the set of spoofing scenarios that resulted in the 
previous figure. The red overlay blocks indicate the approximate periods when there is on air spoofing with each block 
representing a scenario. Looking at the scenarios sequentially, scenarios 1, 2, 4, 6, 7 and 11 are position spoofing scenarios 
whereas the others aim to affect time only. Scenarios 4 and 6 are position jumps while the others position spoofing scenarios 
walked off the position. Note Scenario 0 was a calibration or synchronization scenario with a spoofed signal that did not try 
to change position or time. Scenarios 1, 2, 3, 4, and 6 had some jamming prior to the start of spoofing. From this figure, we 
can see near simultaneous position jumps or drift. However, this comparison does not seem adequate by itself. The 
information from these three phones would not have capture the spoofing in scenarios 4, and maybe 7 and 11. We may utilize 
velocity, this is essentially the gradient of the plot in Figure 5, acceleration or other measurements to enhance confidence in 
spoof determination. 
 

 
Figure 4. Reported GNSS positions of three static Alcatel smartphones over 11 different spoofing scenarios 
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Figure 5. Difference in position of three static Alcatel smartphones over 11 different spoofing scenarios (approximate spoof periods 
indicated in red) 

 
Accelerometer Comparison 
 
A more efficacious way to use GNSS accelerations for spoof detection is to combine it with accelerations derived from 
smartphone accelerometers. To compare and utilize GNSS and accelerometer accelerations for spoof detection, we have to 
manage some important issues. First, the comparison is not straight-forward as GNSS and accelerator accelerations are 
measured in two different frames. We typically cannot align these two frames as we generally do not know the orientation of 
the smartphone. So the comparison is made on an absolute basis rather than along each axes. Second, GNSS accelerations 
can be very noisy due to several natural factors as well as the double differencing of position. Natural factors such as 
multipath and blockage can result in large calculated accelerations from GNSS due to positon jumps. Using GNSS velocity 
helps reduce the noise from the latter source as GNSS velocity is derived from carrier tracking. Additionally, the timing of 
GNSS measurements and low update rate creates a challenge, as will be discussed later. Because of these issues, standalone 
smartphone receiver-based detection using the comparison may only identify significant discrepancies between the 
accelerometers and GNSS-derived accelerations. As discrepancies can also result from natural effects, a high threshold may 
need to be set to prevent too many false alerts. However, if this information is examined across receivers, then we should 
gain a greater ability to discriminate between natural occurrences and spoofing. For multiple receivers in a scattered in given 
area, naturally occurring errors should generally be induced at different times in each receiver whereas, the effect of spoofing 
should be near simultaneous across the affected receivers. 
 
For the acceleration comparison on a smartphone, a comparison of absolute acceleration is made rather than using individual 
axes as may be possible on other platforms [14]. This also allows us to somewhat account for the effect of gravity on the 
accelerometer. Figure 6 shows the nominal accelerations from static accelerometers. It so happens that this data was taken 
during a series of spoofing scenarios where location was displaced. If we subtract gravity, residual is less than 0.2 m/s2 with 
standard deviation less than 0.1 m/s2. The important point verified by this test is that we can get raw accelerometer 
measurements that are not calibrated by GNSS or affect by GNSS spoofing. 
 



 
Figure 6. Acceleration of two static Alcatel smartphones over different spoofing scenarios as measured by MEMS accelerometers (gravity 
also measured) 

 
To see typical differences, we examine the performance of the acceleration comparison under nominal conditions. Figure 7 
shows a mostly mobile test of smartphone GNSS and accelerometer acceleration measurement on a commuter train, Caltrain 
with no spoofing. Additionally, there are two instances of static measurements, around 0.075 and 0.15 hours in the figure, 
when the train is stopped at a station. GNSS data is typically available at a much lower rate, 1 Hertz (Hz), than accelerometer. 
To compensate for the noise and update rate, the data is smoothed using 10 second exponential averaging which translates to 
80 and 10 data points, respectively, for the 8 Hz accelerometer and 1 Hz GNSS data. From the static data, the noise on both 
accelerometer and GNSS acceleration can be seen. Generally the discrepancy between the two sources, as seen in the right of 
the figure, is below 1 m/s2. There are a few instances where the discrepancy is greater and these are worth discussing. First, 
there are three instances where GNSS acceleration spikes much higher than accelerometer acceleration. Each instance occurs 
as the train is starting to accelerate out of the station. This may be due to the low GNSS update rate and perhaps some 
memory in the position filter. There is one instance, at the end of the collection, where accelerometer acceleration is much 
larger. This is because the smartphone was picked up by the user prior to getting off the train. Hence the accelerometer is 
measuring acceleration due to more rapid and smaller human motion which may not be picked up by a 1 Hz GNSS position 
estimate. This is a common occurrence and needs to be considered in the overall monitor design. These results indicate that 
our monitor would be better served by higher GNSS update rates. Smartphones will duty cycle GNSS, sometimes to 10%, to 
preserve battery. Recently, Google provided a version of Android that can prevent such duty cycling.  
 

 
Figure 7. Magnitude of smartphone GNSS and Accelerometer derived acceleration from a Train (Left), Difference of acceleration (Right) 
using 10 second exponential smoothing 

 
Now examine the GNSS derived accelerations during the spoofing tests. These are calculated by differencing the position 
change (i.e. double difference of position over time) as velocity results were not collected. Velocity, derived from GNSS 
Doppler pseudo range rates, should provider better GNSS acceleration measurements. Figure 8 shows the GNS derived 
acceleration for the same spoofing scenarios as in Figure 5. Again, the red highlighted areas are the approximate periods 
where spoofing is on. As the phones are static, one would expect zero acceleration and so the measured GNSS acceleration is 
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also the ideal acceleration difference. Hence, were we to compare the acceleration with that from the accelerometers, the 
difference, based on Figure 6, would be roughly that seen in the figure with the accelerometer contributing approximately 0.2 
m/s2. Based on the prior results, 1 m/s2 seems like a reasonable threshold to flag unusual acceleration differences (i.e. 
potential spoofing). Scenarios 1, 2, 4, 6, 7 and 11 are position spoofing scenarios whereas the other aim to affect time without 
significant effect on position. Large GNSS accelerations across all receivers are seen in many of the position spoof periods. 
However, they are also found during non-spoofing periods. Some periods where large GNSS accelerations are seen across all 
phones occurs during the recovery from spoofing. The fact that this can last for minutes after spoofing is off may indicate 
there is some memory to the receiver position filter. The effect is another factor to consider when designing the monitor. 
There are still other times where there are significant acceleration. Some may be attributed to jamming which did not knock 
out GLONASS so the phones still could have a position and acceleration solution. Regardless, while we can see large 
accelerations across multiple phones during spoofing, there are also many non-spoofing periods where this is seen. Hence, 
acceleration comparison, even across multiple phones, should be supplemented to limit false alerts.  
 

 
Figure 8. Acceleration (double difference of position) of three static Alcatel smartphones over 11 different spoofing scenarios (approximate 
spoof periods indicated in red) 

 
AGC and C/No  
 
Standalone interference and spoof detection using AGC and C/No have been long proposed [15][16]. Using these two metrics 
together not only can help to more robustly detect RFI but also to identify the type of interference. Jamming interference will 
place more energy into the antenna, causing AGC gain to reduce. This increased noise also reduces the signal to noise ratio 
(SNR) or C/No on the received GNSS signal. Spoofing also introduces additional energy unto the antenna, also reducing 
AGC gain. This energy is necessary to induce the receiver to track the spoofed signals rather than the genuine signals. 
However, unlike a jammer, a spoofer will generally not try to change C/No as reducing the relative signal to noise ratio 
makes the spoof signal harder to track, defeating the purpose of spoofing. Jamming and spoofing will generally affect both 
AGC and C/No but have different profiles when examined on an AGC versus C/No plot. Thus, these two metrics are useful 
for both detection and identification of the RFI. 
 
Figure 9 shows AGC and C/No results from field data and different tests taken by Novatel WAAS GIII receivers [17]. In the 
figure, the C/No shown is the average of the C/No of the top four satellites. Many of the measurements are from different 
WAAS reference stations (WRS). These stations experienced different amounts of interference from personal protection 
devices (PPDs). Some stations commonly experienced PPD interference and this is seen in some of WRS data points with 
both lower (below zero) AGC gain and C/No. Other stations have relatively clean measurements with AGC and C/No near 
their nominal zero values. Also shown on the plot are scenarios from the TEXBAT spoof battery [18] played back into the 
receiver. From the figure, one can see that while spoofing can also lower AGC and C/No, its characteristic C/No versus AGC 
relationship is different than that of jamming due their different goals. 



 

 
Figure 9 AGC and C/No of Novatel GIII receivers under different field and laboratory conditions [19]. Field data are from fielded WRS 
receivers while spoofing was conducted in controlled laboratory conditions to test its effects 

 
We were unable to field test the full AGC and C/No capability in a smartphone in 2017 as, unfortunately, there were no 
smartphones with AGC output available at the time of the spoofing exercise. But even without AGC, crowdsourced C/No 
measurement can provide useful information about interference. If the spoofer cannot match C/No in all receivers, then we 
should see similar simultaneous step changes across receivers in the network. Figure 10 shows the average C/No of the top 
four satellites for three Alcatel Ideal smartphones over the spoofing scenarios previously discussed. Both jamming and 
spoofing can be identified in the plot. With jamming, all receivers being jammed will experience a near simultaneous drop in 
C/No. Spoof detection is less obvious but still discernable. Without spoofing, different receivers should have some variations 
in C/No for each satellite. Under spoofing, once the satellite tracking loop has been captured by the spoofed signal, each 
receiver will have the roughly the same C/No for this satellite. This is because the spoofing signal will generally dictate both 
the noise and signal power. Hence, a statistical approach may be used to discover spoofing due to this effect. It can be seen in 
the data in the figure that the average C/No varies more across receivers during nominal situations than during spoofing 
periods. A C/No variation or consistency test across receivers can be done on a satellite by satellite basis. While this method 
identifies all spoofing instances in the scenarios seen in the figure, it is not foolproof. Local effects may cause spoofed C/No 
to differ from receiver to receiver. For example, if the receiver is tracking a mixture of the spoofed and genuine signal or the 
spoofed signal with multipath, this may result in a C/No that is significantly different than that from the pure spoofed signal. 
Additionally, a spoofer, with some work, may be able to weaken this test, especially if GNSS C/No not measured at the same 
time or similarly. A similar conclusion may be drawn about AGC. 
 



 
Figure 10. Average C/No of top four tracked satellites for three static Alcatel smartphones over 11 different spoofing scenarios  

While we had no smartphones with AGC at the spoofing field exercise, we had other receivers that acted as proxies for 
smartphone AGC to identify and detect spoofing. AGC data was collected in the field exercise using different radiofrequency 
front ends. Figure 11 shows an example collected using a SiGe front end during a jamming, then spoofing scenario. Here the 
reduction in AGC voltage due to jamming is clearly seen. However, spoofing does not cause a significant change in AGC as 
due to the transmitted spoofing power and our proximity. For a real spoofer, this means having knowledge of the location of 
the victim receivers and understanding of the transmitted power and gain pattern of the spoofing antenna. While there is a 
difference, it may not be enough to declare spoofing with a single receiver. If multiple receivers indicated similar decreases 
simultaneously, this would provide much more evidence. 
 

 

Figure 11. SiGe AGC value during an on air interference test with jamming then spoofing (position jump) 

 
We also collected AGC measurements from Google Pixel phones output under nominal and interference conditions to see the 
performance of AGC on a smartphone. Figure 12 shows the variation of AGC in a Pixel 3 XL under nominal static outdoor 
operations – in this case in purely passive operations without human interaction. The figure shows some significant variation 



in AGC with variations of almost 5 dB over a very short period (< 30 seconds). This variation may be due to many 
conditions, such as temperatures or other transmissions and automatic smartphone operations. AGC can also change due to 
natural or man-made noise such as emissions from a microwave oven. One can imagine even greater fluctuations with 
smartphone use. We also examined the performance during GNSS interference in an anechoic chamber. The overall AGC 
and C/No performance of a Pixel 2 under different conditions is shown in Figure 13. The Pixel 2 had different resolution 
levels to AGC and was generally coarser. The figures illustrate some of the challenges of using AGC in a smartphone. The 
potentially large allowable variation in AGC in smartphones means that smartphone based AGC + C/No detection may not 
catch weak jamming or spoofing that is within 5 dB of nominal.  
 
Steady state detection requires knowing the nominal range for AGC. As seen before, this range would likely be large and 
may differ for each type of smartphone. Using a single smartphone for AGC based detection is thus challenging due to the 
range of variation that need to be accepted. However, with multiple smartphones, a greater confidence can be developed. For 
example, one phone having a low, but within nominal range, value of AGC is inconclusive. However, if many smartphones 
in an area has such low results, this could indicate a systematic cause of increased energy into the antenna, such as spoofing.  

 

 
Figure 12. AGC Measured from Google Pixel 3 XL during Static Outdoor Test with No User Interaction 

 

 
Figure 13. AGC and C/No Measured from Google Pixel 2 under Nominal and Jamming Conditions (Jamming tested inside Anechoic box) [5] 
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Pseudo ranges and Pseudo range rate 
 
Pseudo ranges provide several possibilities for spoof detection. First, they can allow for stand-alone test of range consistency, 
such as using receiver autonomous integrity monitoring (RAIM), which may be able to detect disagreements associated with 
a mixture of spoofed and genuine signals. These consistency checks are usually thought of as a good complement to AGC + 
C/No spoof detection. This is because power-based spoof detection means that spoof signals cannot overwhelm the genuine 
signal making the mixture of spoofed and genuine signals more likely. 
 
Second, use of pseudo ranges across receivers may allow us to overcome some of the issues with position comparison across 
receivers. As shown, receivers spoofed by the same signal may not converge to the same solution as they may have different 
mixed of spoofed or genuine signals. Rather, we can compare pseudo ranges from receivers for each satellite. For each given 
satellite, a spoofed range from one receiver should show consistency with spoofed ranges with other smartphones minus a 
time offset between the individual phones. This time offset should be essentially the same across all compared spoofed 
signals and is essentially the difference in time between each receiver clock as the spoof satellite clock bias cancel out. If the 
various pseudo ranges from the spoofer are self-consistent, then an even stronger check may be possible. Certainly, the 
spoofer has incentive to make this so as it would make its signals more likely to be used. Similarly pseudo range rate may 
also provide be used to provide a consistency check across receivers. Unfortunately, none of our smartphones could provide 
pseudo ranges at the time of the spoofing test. More testing on this concept will be done in the future. 
 

5. SUMMARY & OBSERVATIONS 
 
Crowdsourced smartphone measurements present a great opportunity for GNSS spoof detection but also poses several 
challenges. They can be used as their own detection network or to supplement and improve the measurements of dedicated 
spoof detection assets. Their use also comes with several challenges not encountered with dedicated monitor receivers. 
Special care in must be taken with the design of detection using measurements from smartphones as they are noisier, 
generally dynamic, and subject to greater variation in natural disturbances. Additionally, as they are not dedicated GNSS 
receivers, they suffer from some important limitations such as update rate and duty cycle. Understanding these limitations is 
critical to designing robust detectors using crowdsourced smartphone measurements. 
 
This paper examined several different methods of spoof, and other RFI, detection with smartphones, particularly in a 
networked way. Network approaches are particularly useful with crowdsourced smartphone measurements because they are 
both subject to more noise (due to user movement and local RFI from within and outside the device) and come from 
potentially unknown and unverified sources. Power measurements, such as with AGC and C/No, was shown to provide good 
means of detecting jamming and spoofing. Field test results showed C/No consistencies across smartphone receivers under 
spoofing. Other measures such as acceleration comparisons, either with accelerometers or other smartphones, and position 
comparisons can give some indication but not conclusive spoof detection by themselves. Measurements now being made 
available such as pseudo range, pseudo range rate, carrier phase will help deal with some of the issues seen with acceleration 
and position comparisons. Even more, AGC, dual frequency measurements and even dual frequency AGC will provide 
further metrics to aid robust spoof detection. But with each addition, we must be sure to test and test thoroughly in the field. 
An important caveat, as shown in field tests, one must understand the behavior of smartphone receivers to design a robust 
detector. A misconception is that spoofing signal will not affect each receiver, even if they are the same model, identically. 
The spoofing tests did not move all the smartphones’ positions to the same location simultaneously. Each smartphone under 
test, despite having the same receiver, has different states resulting in different behavior when experiencing an attack.  
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